溫始地送風(fēng)風(fēng)盤 —— 革新家居空氣享受的藝術(shù)品
溫始·未來生活新定義 —— 智能調(diào)濕新風(fēng)機(jī)
秋季舒適室內(nèi)感,五恒系統(tǒng)如何做到?
大眾對(duì)五恒系統(tǒng)的常見問題解答?
五恒空調(diào)系統(tǒng)基本概要
如何締造一個(gè)舒適的室內(nèi)生態(tài)氣候系統(tǒng)
舒適室內(nèi)環(huán)境除濕的意義
暖通發(fā)展至今,怎樣選擇當(dāng)下產(chǎn)品
怎樣的空調(diào)系統(tǒng)ZUi值得你的選擇?
五恒系統(tǒng)下的門窗藝術(shù):打造高效節(jié)能與舒適并存的居住空間
由于較低的毒性和良好的生物相容性,石墨烯材料在細(xì)胞成像方面**了一股研究熱潮。石墨烯及其衍生物本身具有特殊的平面結(jié)構(gòu)和光學(xué)性質(zhì),或者經(jīng)過熒光染料分子標(biāo)記之后,可用于體外細(xì)胞與***光學(xué)成像[63-66],使其在**顯像和***方面具有很大的應(yīng)用前景。Dai課題組[67]***利用納米尺寸的聚乙二醇功能化氧化石墨烯(GO-PEG)的近紅外發(fā)光性質(zhì)用于細(xì)胞成像。他們將抗體利妥昔單抗(anti-CD20)與納米GO-PEG共價(jià)結(jié)合形成納米GO-PEG-anti-CD20,然后將納米GO-PEG和納米GO-PEG-anti-CD20與B細(xì)胞或T細(xì)胞在培養(yǎng)液中4℃培養(yǎng)1h,培養(yǎng)液中納米GO-PEG的濃度大約為0.7mg/ml,結(jié)果發(fā)現(xiàn)B細(xì)胞淋巴瘤具有強(qiáng)熒光,而T淋巴母細(xì)胞的熒光強(qiáng)度則很弱。另外,通過對(duì)GO進(jìn)行80℃熱處理17天后,再利用200W的超聲對(duì)GO溶液處理2h,得到的GO在紫外光(266–340nm)的照射下顯示出藍(lán)色熒光。氧化石墨烯(GO)的光學(xué)性質(zhì)與石墨烯有著很大差別。無污染氧化石墨納米材料
在推動(dòng)以氧化石墨烯為載體的新藥進(jìn)入臨床試驗(yàn)前,勢(shì)必會(huì)面臨諸多挑戰(zhàn):(1)優(yōu)化氧化石墨烯的制備方法及生產(chǎn)工藝,使其具有可重復(fù)性,并能精確控制氧化石墨烯的尺寸和質(zhì)量;(2)比較好使用劑量的摸索,找到以氧化石墨烯為載體的***療效和毒性之間的平衡點(diǎn);(3)其他表面修飾劑的開發(fā),需具有良好生物相容性且修飾后的氧化石墨烯能在短時(shí)間內(nèi)被生物體***;(4)毒理學(xué)方法的進(jìn)一步規(guī)范,系統(tǒng)闡明以氧化石墨烯為載體***的潛在毒性;(5)體內(nèi)外模型的建立,***評(píng)價(jià)氧化石墨烯***的生物相容性,使其能更好地轉(zhuǎn)化到臨床。此外,以氧化石墨烯為載體的***在大規(guī)模工業(yè)化生產(chǎn)和應(yīng)用時(shí),還需考慮到對(duì)人體和環(huán)境的不利影響,是否可能導(dǎo)致潛在的人體暴露和環(huán)境污染問題,這些有待于進(jìn)一步研究。氧化石墨烯是有著非凡價(jià)值的新材料,將會(huì)在生物醫(yī)學(xué)領(lǐng)域發(fā)揮舉足輕重的作用。制備氧化石墨生產(chǎn)廠家石墨烯微片的缺陷有時(shí)使其無法滿足某些復(fù)合材料在抗靜電或?qū)щ姟⒏魺峄驅(qū)岬确矫娴奶厥庖蟆?/p>
GO膜在水處理中的分離機(jī)理尚存在諸多爭議。一種觀點(diǎn)認(rèn)為通過尺寸篩分以及帶電的目標(biāo)分離物與納米孔之間的靜電排斥機(jī)理實(shí)現(xiàn)分離,如圖8.3所示。氧化石墨烯膜的分離通道主要由兩部分構(gòu)成:1)氧化石墨烯分離膜中不規(guī)則褶皺結(jié)構(gòu)形成的半圓柱孔道;2)氧化石墨烯分離膜片層之間的空隙。除此之外,由氧化石墨烯結(jié)構(gòu)缺陷引起的納米孔道對(duì)于水分子的傳輸提供了額外的通道19-22。Mi等23研究認(rèn)為干態(tài)下通過真空過濾制備的氧化石墨烯片層間隙的距離約為0.3nm。
多層氧化石墨烯(GO)膜在不同pH水平下去除水中有機(jī)物質(zhì)的系統(tǒng)性能評(píng)價(jià)和機(jī)理研究。該研究采用逐層組裝法制備了PAH/GO雙層膜,對(duì)典型單價(jià)離子(Na+,Cl-)和多價(jià)離子(SO42-,Mg2+)以及有機(jī)染料(亞甲藍(lán)MB,羅丹明R-WT)和藥物和個(gè)人護(hù)理品(三氯生TCS,三氯二苯脲TCC)在反滲透膜系統(tǒng)中通過GO膜的行為進(jìn)行研究。結(jié)果發(fā)現(xiàn),在pH=7時(shí),無論其電荷、尺寸或疏水性質(zhì)如何,GO膜能夠高效去除多價(jià)陽離子/陰離子和有機(jī)物,但對(duì)于單價(jià)離子的去除率較低。傳統(tǒng)的納濾膜通常帶負(fù)電,且只能去除帶有負(fù)電荷的多價(jià)離子和有機(jī)物。隨著pH的變化,GO膜的關(guān)鍵性質(zhì)(例如電荷,層間距)發(fā)生***變化,導(dǎo)致不同的pH依賴性界面現(xiàn)象和分離機(jī)制,一些有機(jī)物(例如三氯二苯脲)的分子形狀由于這種有機(jī)物與GO膜的碳表面的遷移性和π-π相互作用而極大地影響了它們的去除。GO的摻量對(duì)于水泥復(fù)合材料的提升效果也有差異。
石墨烯是一種在光子和光電子領(lǐng)域十分有吸引力的材料,與別的材料相比有很多優(yōu)點(diǎn)[1]。作為一種零帶隙材料,石墨烯的光響應(yīng)譜覆蓋了從紫外到THz范圍;同時(shí),石墨烯在室溫下就有著驚人的電子輸運(yùn)速度,這使得光子或者等離子體轉(zhuǎn)換為電流或電壓的速度極快;石墨烯的低耗散率以及可以把電磁場能量限定在一定區(qū)域內(nèi)的性質(zhì),帶來了很強(qiáng)的光與石墨烯相互作用。雖然還原氧化石墨烯(RGO)缺少本征石墨烯中觀測到的電子輸運(yùn)效應(yīng)以及其它一些凝聚態(tài)物質(zhì)效應(yīng),但其易于規(guī)?;苽?、性質(zhì)可調(diào)等優(yōu)異特性,使其在傳感檢測領(lǐng)域展現(xiàn)出極大的應(yīng)用前景。氧化石墨是由牛津大學(xué)的化學(xué)家本杰明·C·布羅迪在1859年用氯酸鉀和濃硝酸混合溶液處理石墨的方法制得。官能化氧化石墨資料
關(guān)于GO與水泥基復(fù)合材料的作用機(jī)制,研究者也有不同的觀點(diǎn),目前仍沒有定論。無污染氧化石墨納米材料
氧化石墨烯(GO)的光學(xué)性質(zhì)與石墨烯有著很大差別。石墨烯是零帶隙半導(dǎo)體,在可見光范圍內(nèi)的光吸收系數(shù)近乎常數(shù)(~2.3%);相比之下,氧化石墨烯的光吸收系數(shù)要小一個(gè)數(shù)量級(jí)(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系數(shù)是波長的函數(shù),其吸收曲線峰值在可見光與紫外光交界附近,隨著波長向近紅外一端移動(dòng),吸收系數(shù)逐漸下降。對(duì)紫外光的吸收(200-320nm)會(huì)表現(xiàn)出明顯的π-π*和n-π*躍遷,而且其強(qiáng)度會(huì)隨著含氧基團(tuán)的出現(xiàn)而增加[11]。氧化石墨烯(GO)的光響應(yīng)對(duì)其含氧基團(tuán)的數(shù)量十分敏感[12]。隨著含氧基團(tuán)的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升,**終達(dá)到2.3%這一石墨烯吸收率的上限。無污染氧化石墨納米材料