小興安嶺的日常巡護,是構筑東北生態安全的必要措施,進入冬季,整個小興安嶺將處于冰雪覆蓋,按照傳統的巡檢模式,危險且費力。整個小興安嶺森林覆蓋率達到96%,只靠肉眼的觀察,很容易錯過死角空白區的潛在危險,因此,無人機上線了。將無人機智能化,在吊艙的基礎上加裝具備智能圖像處理的板卡,再通過定制算法的植入,一個智慧“巡檢員”就上線了。面對大森林這樣復雜的環境,成都慧視開發的高性能AI圖像處理板Viztra-HE030可以勝任,這塊板卡采用了瑞芯微旗艦級芯片RK3588,能夠輸出6.0TOPS的算力,考慮到小興安嶺冬天寒冷的環境,這款板卡能夠適應零下40℃的環境,長時間的戶外工作不在話下。工程師以RV1126核心板為基礎進行定制開發,讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。哪里有目標跟蹤價格信息
多邊形標注能夠能夠幫助我們標注一些規則復雜的物體,如動物、人、車、建筑物等,與矩形標注框等方法相比,多邊形標注更能精確展示被標注物體的形狀、大小以及實時形態,通過大量的多邊形標注工作,能夠更好的幫助我們提高算法模型的準確性和魯棒性。傳統的多邊形標注方法中,標注者需要在物體的邊緣上依次單擊鼠標或使用繪圖工具,將點連接起來形成一個封閉的多邊形。標注的難度取決于被標注物體的復雜程度,相較于矩形框標注更加費時費力,如果遇到大量待標注目標,則極大地影響工作效率。專業目標跟蹤產品RK3399圖像處理板識別概率超過85%。
實際上,跟蹤和檢測是分不開的,比如傳統TLD框架使用的在線學習檢測器,或KCF密集采樣訓練的檢測器,以及當前基于深度學習的卷積特征跟蹤框架。一方面,跟蹤能夠保證速度上的需要,而檢測能夠有效地修正跟蹤的累計誤差。不同的應用場合對跟蹤的要求也不一樣,比如特定目標跟蹤中的人臉跟蹤,在跟蹤成功率、準確度和魯棒性方面都有具體的要求。另外,跟蹤的另一個分支是多目標跟蹤(MultipleObjectTracking)。多目標跟蹤并不是簡單的多個單目標跟蹤,因為它不僅涉及到各個目標的持續跟蹤,還涉及到不同目標之間的身份識別、自遮擋和互遮擋的處理,以及跟蹤和檢測結果的數據關聯等。
eVTOL是指電動垂直起降飛行器,大力開展eVTOL試點,是對低空經濟的強動力注入,而無人機正是這一領域的關鍵選擇之一。無人機在低空經濟中扮演者重要角色,隨著應用領域的不斷增多,未來無人機的數量將呈式增長,屆時eVTOL起降中心將聚集眾多各式各樣的無人機,如何高效有序的讓無人機彼此工作而不互相干擾是行業值得思考的一件事。當許多無人機需要同時起飛執行不同的任務時,如果操控不當,或者收到外力影響,就容易出現事故,而人為的反應畢竟有延后,不可能做到完全的補救操作,因此無人機自身的規避措施建設一樣重要。無人機可能會受到敵方勢力或者強風等因素干擾,造成不同幅度的振動,從而影響板卡能否正常完成任務。
目標檢測與目標跟蹤這兩個任務有著密切的聯系。針對目標跟蹤任務,微軟亞洲研究院提出了一種通過目標檢測技術來解決的新視角,采用簡潔、統一而高效的“目標檢測+小樣本學習”框架,在多個主流數據集上均取得了杰出性能。目標跟蹤(Object tracking)與目標檢測(Object detection)是計算機視覺中兩個經典的基礎任務。跟蹤任務需要由用戶指定跟蹤目標,然后在視頻的每一幀中給出該目標所在的位置,通常由一系列的矩形邊界框表示。而檢測任務旨在定位圖片中某幾類物體的坐標位置。對物體的檢測、識別和跟蹤能夠有效地幫助機器理解圖片視頻的內容,為后續的進一步分析打下基礎。慧視AI板卡能夠凸顯AI的智慧之能,變被動為主動,提供多種能主動預警的視頻分析和人臉識別黑白名單管理。海南可靠目標跟蹤
RK3399PRO圖像處理板識別概率超過85%。哪里有目標跟蹤價格信息
隨著科技的不斷進步,食品檢測設備也在持續創新升級。光譜分析技術、色譜技術、生物傳感技術等先進技術被廣泛應用于食品檢測領域,使得檢測更加高效、準確、靈敏。例如,基于納米技術的傳感器能夠檢測出極其微量的有害物質,為食品安全提供了更為可靠的保障。同時,智能化、自動化的食品檢測設備也在逐漸普及,不僅提高了檢測效率,還降低了人為誤差,進一步提升了檢測的可靠性和穩定性。然而,當前食品檢測設備的發展仍面臨一些挑戰。部分小型食品企業由于資金有限,難以配備先進的檢測設備,導致檢測能力不足;一些偏遠地區的食品檢測機構,也存在設備陳舊、更新換代慢等問題。此外,食品檢測設備的標準體系有待進一步完善,不同設備之間的檢測結果可比性還需加強。哪里有目標跟蹤價格信息