n摻雜可以明顯影響碳點(CDs)的發(fā)射和激發(fā)特性,使雙光子碳點(TP-CDs)具有本征雙光子激發(fā)特性和605nm紅光發(fā)射特性。在638nm激光的照射下,除了長波激發(fā)和發(fā)射外,還能產(chǎn)生活性氧,這為光動力技術(shù)提供了極大的可能性。更重要的是,各種表征和理論模擬證實了摻雜誘導的N雜環(huán)在TP-CDs與RNA的親和力中起著關鍵作用。這種親和力不僅可以實現(xiàn)核仁特異性的自我靶向,還可以通過ROS斷裂RNA鏈來解離TP-CDs@RNA復合物,從而在治療過程中產(chǎn)生熒光變化。TP-CDs結(jié)合了ROS產(chǎn)生的能力、PDT過程中的熒光變化、長波激發(fā)和發(fā)射特性以及核仁特異性自靶向性,因此可以認為是一種實時處理核仁動態(tài)變化的智能CDs。微型雙光子顯微鏡的優(yōu)勢是。國外熒光激光雙光子顯微鏡掃描深度
雙光子顯微鏡(2PM)可以對鈣離子傳感器和谷氨酸傳感器進行亞細胞分辨率的成像,從而測量不透明腦深部的活動。成像膜的電壓變化可以直接反映神經(jīng)元的活動,但神經(jīng)元活動的速度對于常規(guī)的2PM來說太快了。目前,電壓成像主要由寬視場顯微鏡實現(xiàn),但其空間分辨率較差,且只能在淺深度成像。因此,為了以高空間分辨率成像不透明腦中膜電壓的變化,需要將成像速率提高2PM。面向模塊輸出端的子脈沖序列可視為從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成空間分離和時間延遲的聚焦陣列。然后,該模塊被集成到一個帶有高速數(shù)據(jù)采集系統(tǒng)的標準雙光子熒光顯微鏡中,如圖2所示。光源是重復頻率為1MHz的920nm激光器。FACED模塊可以產(chǎn)生80個脈沖焦點,脈沖時間間隔為2ns。這些焦點是虛擬源的圖像。虛光源越遠,物鏡處的光束尺寸越大,焦點越小。光束可以沿Y軸比沿X軸更好地填充物鏡,從而在X軸上產(chǎn)生0.82m和0.35m的橫向分辨率。國外熒光激光雙光子顯微鏡掃描深度雙光子顯微鏡能夠在細胞甚至是亞細胞水平上對神經(jīng)細胞的形態(tài)結(jié)構(gòu)、離子濃度、細胞運動、進行直接成像監(jiān)測。
1990年初,當WinfriedDenk剛從康奈爾大學博士畢業(yè)準備前往瑞士讀博后時,他看了一本關于激光掃描顯微鏡的書,從中了解到非線性光學效應——強光和物質(zhì)的相互作用。當時,Denk有同事研究生物樣品中的鈣離子但苦于沒有強大的紫外激光器和光學元件,于是他就想到如果使用雙光子吸收就能夠繞開紫外,換言之,與其通過一個紫外光子激發(fā)標記的鈣離子,通過兩個雙倍波長的可見光光子也能激發(fā)相同的熒光。有了想法后馬上實驗。借了一套染料飛秒激光器,Denk聯(lián)合他的導師WattWebb及其博士生JamesStrickler只用六個小時就完成了實驗搭建,采集數(shù)據(jù)則用了兩到三天,于是一篇里程碑式的文章就此誕生了。
通過并行化不同激光波長的激光掃描,研究人員增加了在相同時間內(nèi)可以成像的體積,同時保持了高的時間和空間分辨率。研究人員通過引入兩種不同波長的鈣信號熒光探針,將神經(jīng)元群體的活動標記為兩種不同的顏色,同時激發(fā)兩種不同波長的探針,從而實現(xiàn)了兩種顏色的并行數(shù)據(jù)記錄。為了實現(xiàn)三維空間成像,研究人員還在兩個激光束上配置了快速變焦系統(tǒng),即一個電透鏡和一個空間光調(diào)制器。因此,可以以10Hz的速度同時記錄10個500微米和500微米的平面,覆蓋600微米的深度,覆蓋大腦皮層第二層到第五層的結(jié)構(gòu),體積內(nèi)可以記錄2000多個神經(jīng)元。雙光子顯微鏡能夠進行指標成像;
而配合了雙光子激發(fā)技術(shù),激光共聚掃描顯微鏡則能更好得發(fā)揮功效。那么,什么是雙光子激發(fā)技術(shù)呢?在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子使電子躍遷到較高能級,經(jīng)過一個很短的時間后,電子再躍遷回低能級同時放出一個波長為長波長一半的光子(P=h/λ)。利用這個原理,便誕生了雙光子激發(fā)技術(shù)。雙光子顯微鏡使用長波長脈沖激光,通過物鏡匯聚,由于雙光子激發(fā)需要很高的光子密度,而物鏡焦點處的光子密度是比較高的,所以只有在焦點處才能發(fā)生雙光子激發(fā),產(chǎn)生熒光,該點產(chǎn)生的熒光再穿過物鏡,被光探頭接收,從而達到逐點掃描的效果。雙光子顯微鏡在多個領域研究中已有許多成功實例。熒光激光雙光子顯微鏡多少錢
雙光子顯微鏡只有焦平面處才能形成雙光子吸收,而焦平面之外由于光強低無法被發(fā)動,所以雙光子成像更清晰。國外熒光激光雙光子顯微鏡掃描深度
雙光子顯微成像技術(shù)不是什么新技術(shù),早在20多年前就有了,目前已經(jīng)在生命科學和材料科學中廣泛應用。幾年前雙光子**過期后,已經(jīng)推出自己的雙光子顯微鏡的廠家估計不少于10家以上。即便如此,世界上很多實驗室都搭雙光子,自己搭的好處有很多,首先是便宜,尤其是實驗室已經(jīng)有飛秒激光器,那就更很省錢了。其次是靈活,可以選擇針對特殊用途的搭配,改動也靈活。結(jié)束后的好處就是可以鍛煉隊伍,一趟走下來可以把新手帶出來,后期維護也更加自由。當然壞處也不少,首先是操心,特別是第1次搭的時候,開始要想方案,后來要解決各種實際問題。其次是花時間,加上買配件的時間,比買一臺現(xiàn)成的商業(yè)化雙光子耗時長。現(xiàn)在已經(jīng)有不少關于如何搭雙光子顯微鏡的文章,各種protocol,大多是老外寫的,中文的較少。其實完全自己搭一套好用的系統(tǒng)還是不容易的,尤其是沒有經(jīng)驗的時候,容易走彎路,多花錢,也多花時間,再加上雙光子的重要器件都需要從國外購買,在國內(nèi)買這些東西耗時較長。因此,我想總結(jié)一下我們的經(jīng)驗,貼出來分享,希望能幫到想自己動手的實驗室國外熒光激光雙光子顯微鏡掃描深度