Ca2+是一種重要的第二信使,在調節細胞生理反應中起著重要作用。發展和利用雙光子熒光顯微成像技術觀測Ca2+熒光信號,可以從某些方面分析生物體或細胞的變化機制,具有重要意義。利用雙光子熒光顯微成像技術,我們可以觀察到細胞內熒光探針標記的Ca2*的時間和空間熒光圖像的變化,也可以觀察到一定水平或部分細胞內(Ca2+)的熒光圖像和變化。通過對單個細胞的研究發現,Ca2+的分布不僅在細胞的局部區域之間是不均勻的,而且在細胞內不同深度或層次的局部區域之間也存在不同程度的Ca2+梯度,稱為空間Ca2+梯度。多光子顯微鏡適用于動物大腦皮層深層(400微米)細胞的形態、生理學研究。美國多光子顯微鏡原理
隨著現代分子生物學技術的快速發展和科學技術的進步,特別是后基因組時代的到來,人們已經能夠根據需要建立各種細胞模型,這為在體內研究基因表達、分子間相互作用、細胞增殖、細胞信號轉導、誘導分化、細胞凋亡和新生血管生成提供了良好的生物學條件。然而,盡管利用現有的分子生物學方法對基因表達與蛋白質的相互作用進行了深入細致的研究,但仍然無法實現對蛋白質和基因活性的實時動態監測。在細胞的生理過程中,基因尤其是蛋白質的表達、修飾和相互作用往往是可逆的、動態變化的。目前,分子生物學方法無法捕捉到蛋白質和基因的這些變化,但獲得這些信息對于研究基因表達與蛋白質的相互作用非常重要。因此,有必要發展一種動態、實時、連續監測蛋白質和基因活性的方法。Ultima 2P Plus多光子顯微鏡代理商中國市場多光子顯微鏡產量、消費量、進出口分析及未來趨勢。
1,光源、光路高度整合通過精密的設計,將飛秒激光器、掃描振鏡、PMT、濾光片組,甚至是單光子熒光光路全套整合在一個不大的掃描頭內,無論掃描頭如何移動,掃描頭內的光路都可以保持穩定不變,從而實現了超穩定、免維護的特點。2,配合多維度、高精度機械控制系統。掃描頭直接架設在一個多維運動的機械裝置上,可沿任意方向和角度移動掃描頭,方便對動物樣本進行多方位的掃描觀察。而這在常規方案的多光子顯微鏡上有很大的實現難度,不但需要多個關節組合的光路導向機構,并且在這些關節旋轉的時候,都冒著極大的光路偏移的風險,以至于在使用一段時間后都需要對光路進行再次校準,而這樣的問題在我司上則完全不會發生。3.一機多能。
光學成像技術與分子生物學技術的結合為研究上述科學問題提供了條件與可能。因此,在現代分子生物學技術基礎上,急需發展新的成像技術。在動物體內,如何實現基因表達及蛋白質之間相五作用的實時在體成像監測是當前迫切需要解決的重大科學技術問題。這是也生物學、信息科學(光學)和基礎臨床醫學等學科共同感興趣的重大問題。對這-一一科學問題的研究不僅有助于闡明生命活動的基本規律、認識疾病的發展規律,而且對創新藥物研究、藥物療效評價以及發展疾病早期診斷技術等產生重大影響。多光子顯微鏡技術的優勢如何?又有哪些應用?
使用MPM對神經元進行成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經元,這樣不僅避免掃描到任何未標記的神經纖維,還可以優化激光束的掃描時間。隨機訪問掃描可以通過聲光偏轉器(AOD)來實現,其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產生的聲波引起周期性的折射率光柵,激光束通過光柵時發生衍射。通過射頻電信號調控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現一維橫向的任意點掃描,利用1對AOD,結合其他軸向掃描技術可實現3D的隨機訪問掃描。但是該技術對樣本的運動很敏感,易出現運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被普遍的使用。帶寬足以覆蓋鈦藍寶石激光器的可調諧范圍和用于多光子顯微鏡的許多其它激光器的典型中心頻率。美國在體多光子顯微鏡長時間觀察
多光子顯微鏡將生物打印結構準確定位和定向到特定的解剖部位,使其能夠在小鼠組織內制造復雜結構。美國多光子顯微鏡原理
多光子激光掃描顯微鏡的產業發展,世界多光子激光掃描顯微鏡產業主要分布在德國和日本,德國以徠卡顯微系統和蔡司為基礎,日本以尼康和奧林巴斯為基礎。2020年以來,這些企業占據了全球多光子激光掃描顯微鏡市場的64.44%,它們的發展策略影響著多光子激光掃描顯微鏡市場的走向。目前,世界市場對多光子激光掃描顯微鏡的需求正在增長,中國市場的需求增長更快。未來五年多光子激光掃描顯微鏡市場的發展在中國將仍有巨大的發展潛力。美國多光子顯微鏡原理