離子滲氮溫度可根據零件材質、零件技術要求(包括滲氮層硬度、深度、心部硬度和允許的變形量)等因素綜合考慮確定。生產上常用的離子滲氮溫度范圍為450~650℃。滲氮溫度低對結構鋼而言能得到較高的滲層硬度、保持較高的心部強度、減少工件變形,但滲層較淺;580℃以上溫度的離子滲氮一般只用于高合金不銹鋼和含鈦、釩的快速氮化鋼,為了提高滲速、縮短生產周期,這類材料采用較高的氮化溫度,但由于其滲氮形成的合金氮化物比較穩定,不至于因溫度較高而聚集長大,所以滲氮后仍保持較高的表面硬度。研究表明,化合物層、過渡層厚度及表面硬度均隨溫度的變化出現各自的極大值點,對應極大值的溫度隨鋼種不同而異。滲氮溫度的不同也將改變化合物中組成相的百分比。例如:在N2和H2混合氣體中離子滲氮時,對于每一種鋼存在一個轉折溫度Tc,低于Tc時,隨著溫度的提高,γ′相增多,ε相減少,而高于Tc時,隨著滲氮溫度的提高γ′相減少,ε相增多。 離子化學熱處理是一類正在發展并且日益受到重視的表面強化工藝.潮州模具離子氮化設備制造
離子氮化后工件變形的本質。離子氮化后零件的變形實際上是零件尺寸變化的一種表現形式。尺寸變化是由于氮化時工件表面吸收了大量的氮原子,生成各種氮化物或工件表層原始組織的品格常數增大所致,宏觀上則表現為表層體積的略微增加。氮化后零件的變形是一種普遍現象。各種氮化方法(氣體氮化、液體氮化和離子氮化)處理后的零件或多或少總會存在一定的變形。但應該說明的是:離子氮化后零件的脹大量較其它氮化方法要小。這是因為:離子氮化中的“陰極濺射”有使尺寸縮小的作用,因而抵消了一部分氮化變形量。氮化后尺寸的脹大量取決于零件表層的吸氮量。因而,影響吸氮量的因素均是影響變形的因素。影響變形的因素主要有:材料中合金元素的含量、氮化溫度、氮化時間、氮化氣氛中的氮勢等。材料中合金元素含量越高,零件氮化后的變形越大。氮化溫度愈高、氮化時間愈長,零件氮化后的變形愈大。氮化氣氛的氮勢越高,零件氮化后的變形愈大。 清遠金屬離子氮化什么價格離子氮化是利用輝光放電原理進行的一種化學熱處理,故又稱輝光離子氮化,也有稱離子轟擊氮化.
離子滲氮工藝參數:1.滲氮溫度滲氮溫度是重要的工藝參數,溫度的高低直接影響滲氮速度﹑硬度及滲氮層組織。在一定滲氮溫度范圍內,溫度越高,氮原子遷移及擴散的能力越強,滲氮速度越快,滲氮層也就越厚。不同材料滲氮溫度有一比較好值,在此溫度下,滲氮層硬度比較高。2.滲氮時間滲氮層與滲氮時間呈拋物線關系。3.氣體成分生產上常用的離子滲氮氣體主要有氨氣﹝NH3﹞﹑N2+H2及熱分解氨。在離子滲氮氣體的基礎上加一定比例的含碳氣體﹝如酒精等蒸發氣﹞,可進行離子NC共滲﹝離子軟氮化﹞。4.氣壓氣體壓力影響輝光放電特性,氣壓高,陰極位降區dk小,輝光層薄;氣壓低,陰極位降區dk大,輝光層厚。一般離子滲氮氣壓在數百Pa。對有孔﹑窄槽的工件,要注意調整氣壓,改變陰極放電長度d輝,避免出現空心陰極效應。5.電參數離子滲氮的電壓和電流密度主要取決于滲氮溫度的高低及氣壓等,一般在保溫階段電流密度為。
模具進行氮化處理可以明顯提高模具表面的硬度、耐磨性,抗咬合性、抗腐蝕性能和抗疲勞性能。由于滲氮溫度偏低,一般在500~600度范圍內進行,滲氮時模具芯部沒有發生相變,因此模具滲氮后變性較小。一般熱作模具鋼都可以在淬火、回火后在地獄回火溫度的溫度區進行滲氮;一般碳鋼和合金鋼在制作塑料模具時也可以在調質后的回火溫度下滲氮;一些特殊要求的冷作模具剛也可以在氮化后進行淬火、回火熱處理。實踐證明,經過氮化處理后的模具使用壽命明顯提高,因此模具氮化處理已經在生產中得到廣泛應用。但是,由于工藝不正確或操作不當,旺旺造成模具滲氮硬度低、硬度不均勻、表面有氧化色、滲層不致密,表面出現網狀或針狀氮化物等缺陷嚴重影響模具使用壽命。因此研究模具滲氮層缺陷、分析其產生的原因、探討減少和防止滲氮缺陷產生的工藝措施,對提高模具的產品質量,延長壽命有十分重要的意義。離子氮化不污染空氣,氣體耗量小,質量穩定,可以實現自動控制,已獲得了廣泛應用.
離子氮化的處理效果主要受電壓、電流、頻率、氣壓、溫度、時間、氣氛比例參數影響。電壓:離子氮化想要持續產生輝光形成滲氮需要給定一個超過引燃電壓的電壓值,引燃電壓的大小受氣壓、氣氛、陰陽極距離影響,常見離子氮化電壓的使用范圍為400-600V。電流:根據離子氮化爐的大小與裝爐多少,離子氮化的總電流大小不同,但是要想滲氮效果好,離子氮化過程中的電流密度值需要足夠大,一般零件的電流密度需要達到6A/m2才能獲得好的氮化效果,形狀復雜的零件還需要達到8A/m2以上。頻率:由于脈沖電源的巨大優勢,大家對于脈沖頻率的選擇不盡相同。一般來說,脈沖頻率的常用范圍是1-8KHz,即每個周期的時間在125-1000μs。脈沖頻率過高與過低都會對離子氮化過程產生不好的影響,頻率過低時,容易產生零件局部溫度過高、表面過熱燒傷等問題,而頻率過高又會影響電源功率的輸出效率,都不利于離子氮化過程。目前進口的離子氮化電源都已經使用變頻式電源,工藝人員可以根據需求選擇適合的脈沖頻率。氣壓:氣體壓力會影響產品表面輝光層的分布,由此會影響滲氮效果的均勻性。一般使用的氣體壓力范圍是100-400Pa,對于形狀復雜的零件,會用到600Pa以上的氣體壓力。離子氮化與氣體氮化相比,氮化時間可縮短1/3~1/2,可獲得較深的滲層.云浮小型離子氮化對比
離子氮化處理超長超大復雜工件,易維護,特惠,高標準,脈沖技術同行更優.潮州模具離子氮化設備制造
二十世紀六十年代離子滲氮理論開始應用于生產實際,至今已經歷了近五十年,離子滲氮已經成為離子熱處理技術中較成熟、較普及、較富有生命力的工藝。隨著工藝技術的進步,離子滲氮理論也在不斷充實完善,但至今尚無一種理論能解釋所有離子滲氮現象。人們在不同的試驗條件下,先后提出了濺射、氮氫分子離子化、中性原子轟擊等幾種離子滲氮理論。以下對濺射理論做一簡要介紹。濺射理論是一種為許多人所接受(或默認)的經典理論,該理論于1965年由。該理論認為,滲氮層是通過陰極濺射形成。在真空爐體內,工件為陰極,爐體為陽極,加上直流高壓后,稀薄氣體電離,形成等離子體。N+、H+、NH3+等正離子在陰極位降區被加速,轟擊工件(陰極)表面,其動能消耗于:①轉化為熱能加熱工件。②打出電子,產生二次電子發射。③陰極濺射。高能正離子轟擊陰極造成C、N、O、Fe等原子濺射,而Fe不斷與陰極表面附近的活性氮原子化合成高氮化合物FeN(Fe成為活性氮的載體),由于背散射又沉積到陰極表面,隨后在離子轟擊和熱作用下,氮化鐵分解(FeN→Fe2N→Fe3N→Fe4N)轉變為低氮化合物,分解析出的氮原子一部分擴散進鋼鐵內,一部分返回等離子區。 潮州模具離子氮化設備制造
廣東衡創金屬制品有限公司前身為廣州市衡創表面熱處理有限公司,成立于2016年, 舊廠址位于廣州市天河區。后因發展需要,工廠于2020年整體搬遷至佛山市南海區,并重新注冊公司為“廣東衡創金屬制品有限公司”。為了進一步發展,2021年在東莞市設立“東莞市衡創金屬制品有限公司”作為分公司,同步開展真空熱處理業務。目前佛山廠房和東莞廠房面積各1000平方米。公司目前擁有包括離子氮化爐、氣體氮化爐、蒸氣氧化爐、真空油淬爐和真空氣淬爐等熱處理生產設備。團隊骨干成員來自于華南理工大學,并依托華南理工大學30多年的離子滲氮處理加工經驗、雄厚的科研和檢測實力,以努力打造華南地區具有影響力的專業離子滲氮企業為已任,同時為滿足各客戶需要,開展各種熱處理加工業務。