IGBT模塊主要由IGBT芯片、覆銅陶瓷基板(DBC基板)、鍵合線、散熱基板、二極管芯片、外殼、焊料層等部分構成:IGBT芯片:是IGBT模塊的重要部件,位于模塊內部的中心位置,起到變頻、逆變、變壓、功率放大、功率控制等關鍵作用,決定了IGBT模塊的基本性能和功能。其通常由不同摻雜的P型或N型半導體組合而成的四層半導體器件構成,柵極和發射極在芯片上方(正面),集電極在下方(背面),芯片厚度較薄,一般為200μm左右。為保證IGBT芯片之間的均流效果,在每個芯片的柵極內部還會集成一個電阻。IGBT模塊的低損耗特性減少了開關過程中的損耗和導通時的能耗。閔行區4-pack四單元igbt模塊
未來趨勢與挑戰
技術演進
寬禁帶半導體:碳化硅(SiC)IGBT模塊逐步替代傳統硅基器件,提升開關頻率(>100kHz)、降低損耗(<50%),適應更高電壓(>10kV)與溫度(>200℃)場景。
模塊化與集成化:通過多芯片并聯、三維封裝等技術,提升功率密度與可靠性,降低系統成本。
應用擴展
氫能與儲能:IGBT模塊在電解水制氫、燃料電池發電等場景中,實現高效電能轉換與系統控制。
微電網與分布式能源:支持可再生能源接入與電力平衡,推動能源互聯網發展。 長寧區富士igbt模塊IGBT模塊封裝對底板進行加工設計,提高熱循環能力。
新能源發電與并網
光伏逆變器:將光伏板產生的直流電轉換為交流電,并入電網。
風力發電變流器:控制風機發電機的轉速和功率輸出,實現高效發電。
儲能系統:控制電池的充放電過程,實現電能的穩定存儲與輸出。
交通電氣化電動汽車(EV)與混合動力汽車(HEV):驅動電機,實現加速、減速、能量回收。
充電系統:交流慢充和直流快充的主要器件,保障快速、安全充電。
軌道交通:控制高鐵、地鐵等牽引電機的轉速和扭矩,實現高速運行與準確制動。
柵極電壓觸發:當在柵極施加一個正電壓時,MOSFET部分的導電通道被打開,電流可以從集電極流到發射極。由于集電極和發射極之間有一個P型區域,形成了一個PN結,電流在該區域中得到放大。電流通路形成:導通時電流路徑為集電極(P+)→ N-漂移區(低阻態)→ P基區 → 柵極溝道 → 發射極(N+)。此時IGBT等效為“MOSFET驅動的BJT”,MOSFET部分負責電壓控制,驅動功率微瓦級;BJT部分負責大電流放大,可實現600V~6500V高壓場景應用。關鍵導通參數:導通壓降VCE(sat)典型值為1~3V(遠低于BJT的5V),損耗更低;開關頻率為1~20kHz,兼顧效率與穩定性(優于BJT的<1kHz,低于MOSFET的100kHz+)。IGBT模塊在太陽能系統中確保逆變器穩定運行,提升系統效率。
新能源汽車:電機驅動:新能源汽車通常采用三相異步交流電機,電池提供的直流電需要通過IGBT控制的逆變器轉換為交流電,以適應電機的工作需求。IGBT不僅負責將直流電轉換為交流電,還參與調節電機的頻率和電壓,確保車輛的平穩加速和減速。車載空調:新能源汽車的空調系統依賴于IGBT來實現直流電到交流電的轉換,從而驅動空調壓縮機工作。充電樁:在新能源汽車充電過程中,IGBT用于將交流電轉換為適合車載電池的直流電。例如,特斯拉的超級充電站能夠提供超過40kW的功率,將電網提供的交流電高效地轉換為直流電,直接為汽車電池充電。IGBT模塊封裝過程中包括外觀檢測、靜態測試等工序。寶山區igbt模塊PIM功率集成模塊
IGBT模塊作為高性能功率半導體器件,在電力電子領域具有廣泛應用前景。閔行區4-pack四單元igbt模塊
交通電氣化
電動汽車功能:IGBT模塊是電動汽車電機控制系統的重點,將電池輸出的直流電逆變為交流電,驅動電機運轉。
優勢:影響電機的效率和響應速度,進而影響汽車的加速性能和續航里程。采用高性能IGBT模塊的新能源汽車,電機能量轉換效率可提升5%-10%,0-100km/h加速時間縮短1-2秒,續航里程增加10%-20%。
充電系統功能:無論是交流慢充還是直流快充,IGBT模塊都不可或缺。交流充電時,將電網的交流電轉換為適合電池充電的直流電;直流快充中,實現對高電壓、大電流的精確控制。
優勢:保障快速、安全充電,縮短充電時長,提升用戶體驗。例如,配備高性能IGBT模塊的直流快充系統,可在30分鐘內將電量從30%充至80%。
軌道交通功能:IGBT模塊是軌道交通車輛牽引變流器和各種輔助變流器的主流電力電子器件,控制牽引電機的轉速和扭矩,實現列車高速運行與準確制動。
優勢:耐高壓、大電流,適應高功率需求,降低能耗。 閔行區4-pack四單元igbt模塊