相變儲能供熱機組特點:1、安全:機組導熱介質為儲能液,而不是直接加熱,保證安全;2、能效高:制熱效率可達160%以上,比傳統電鍋爐的輸入功率低1倍以上;3、常壓運行:機組常壓運行,無需辦理任何許可年檢手續;4、安裝簡單:占地面積很小,可在原鍋爐房內直接切改,充分利用原有管路設備及采暖末端;5、全自動運行:機組每天可設置多個運行時間段,根據使用要求設置后全自動運行,無需專人值守;6、運行穩定使用壽命長:機組故障率極低,運行能效不受氣候條件影響,四季制熱效率保持不變,使用壽命15年以上。儲熱材料應具有適當的相變溫度。地采暖安裝價格
相變材料的技術原理是利用物質的相變過程來進行儲放熱。具體來說,物質有固、液、氣三相,物質由一種狀態(相)變為另一種狀態(相)會吸收或者釋放能量,且該過程中溫度不變,吸收或者釋放的熱量,學術上定義為相變潛熱。相變材料種類很多,其分類標準也很多樣。若按物質相狀態之間的轉變變方式可以分為以下四種:固體與固體之間的相變(固-固相變)、固體與液體之間的相變(固-液相變)、氣體與固體之間的相變(氣-固相變)和氣體與液體之間的相變(氣-液相變)。固-固相變材料的儲能原理如下:當物質由一種結晶態向另一種結晶態的轉變時,會發生能量的轉換,利用該過程可以達到儲能的目的。這類相變材料特點是:1、很小的潛熱蓄熱密度;2、跟固液相變體積變化相比,固固相變的體積變化較小。固-固相變具備一項很明顯的優勢:由于對容器的要求不高,因此帶來容器設計上的靈活性。相比于固固相變材料,固氣相變和液氣相變這兩類材料的相變潛熱更大,但是這兩類相變材料具有一個很明顯的缺點:即在相變過程中,這兩類相變材料會伴隨大量氣體的產生,對容器的氣密性有很高的要求,因此使得容易設計很復雜和不切實際。雖然固液相變材料的相變焓略微小于氣液相變材料的相變焓。 北京相變儲熱原理生產商儲熱系統是解決能源供應時間與空間矛盾的有效手段。
能量雖然可以以機械能、聲能、化學能、電磁能、光能、熱能及核能等多種形式存在,但在人類的活動中,絕大多數能量是需要經過熱能的形式和環節被轉化和利用的,尤其是在我國,這個比例達到90%以上。正因如此,儲熱技術較為簡單和普遍,它的應用也遠遠早于工業**尤其是電力**后才出現的其它儲能技術,如我國北方地區的燒炕取暖即是利用儲熱技術解決熱能供求在時間上的不匹配。隨著人類的發展和對能源利用技術的不斷改進,儲熱技術也不斷發展,而且在人們的生產和生活中,在能源的集中供應端和用戶端,都發揮著日益重要的作用。
相變供熱是一種以相變儲能材料為基礎的高新儲能技術,主要分為熱化學儲熱、顯熱儲熱和相變儲熱,熱化學儲熱雖然蓄熱密度大,但不安全且蓄熱過程不可控,嚴重影響其推廣應用,顯熱儲熱是目前應用較廣的一種儲熱方式,然而它的儲熱密度小,相比之下,相變儲熱的儲熱密度是顯熱儲熱的5~10倍甚至更高,由于具有溫度恒定和蓄熱密度大的優點,相變蓄熱技術得到了較多的研究,尤其適用于熱量供給不連續或供給與需求不協調的工況下,相變儲熱系統作為解決能源供應時間與空間矛盾的有效手段,是提高能源利用率的重要途徑之一。儲熱材料要有很好的相平衡性質,不會產生相分離。
相變儲熱的基本原理:將物質在等溫相變過程中釋放的相變潛熱通過盛裝相變儲熱材料的容器將能量儲存起來,待需要時再把熱(冷)能通過一定的方式釋放出來供需求者使用。相變儲熱材料的儲熱容量為相變過程中吸收或者釋放的熱量。化學反應儲熱的特點:(1)儲能密度高(2)正逆反應可以在高溫下進行(3)可以通過催化劑或將產物分離等方式,在常溫下長期儲存分解物。(4)可供懸著的材料較多。(5)許多化學反應生產物中的兩者或其中之一是氣體。儲熱主要分為熱化學儲熱、顯熱儲熱和相變儲熱。北京相變儲熱原理生產商
儲熱系統的平衡電網峰谷荷差,可減輕電廠建設壓力。地采暖安裝價格
若改添加碳納米管或氮化硼等其他導熱材料,則所得之石蠟PCM復合材料的潛熱損失較高,顯示石墨烯是較為適合的相變材料添加材。2015年年,我曾配合中國臺灣大葉大學姚品全教授進行石墨烯石蠟復合材料的相關研究,研究結果發現:在相同石墨烯總添加量的情況下(石蠟含量3wt.%),以不同石墨烯懸浮液(10wt.%、20wt.%、30wt.%)所配制的石蠟PCM復合材料,其導熱系數的提升值極為近似;熔滴點實驗顯示:上述三種石墨烯懸浮液配方均可得到穩定的熔滴點提升,其中,30%配方所得石蠟PCM復合材料之熔滴溫度提升效果比較好,從℃上升至℃,證明添加石墨烯可使石蠟相變材料更快達到定型的效果。石墨烯的分散性對pcm復合材料的熱性質提升至為關鍵,先導研究發現:單以添加石墨烯粉體的方式,無法得到均勻的石蠟pcm復合材料,若改以石墨烯懸浮液的方式添加,則可大幅改善其分散性.進一步研究發現:若再添加適量的“界面活性劑,表面活性劑],則可得到更為均勻的石蠟PCM復合材料。 地采暖安裝價格