在AlN陶瓷的燒結工藝中,燒結氣氛的選擇也十分關鍵的。一般的AlN陶瓷燒結氣氛有3種:還原型氣氛、弱還原型氣氛和中性氣氛。還原性氣氛一般為CO,弱還原性氣氛一般為H2,中性氣氛一般為N2。在還原氣氛中,AlN陶瓷的燒結時間及保溫時間不宜過長,燒結溫度不宜過高,以免AlN被還原。在中性氣氛中不會出現上述情況。所以一般選擇在氮氣中燒結,這樣可以獲得性能更好的AlN陶瓷。目前,國內氮化鋁材料的研究制造水平相比國外還有不小差距,研究基本停留在各大科研院所高校、真正能夠獨自產業化生產的機構極少。未來需把精力投入到幾種方法的綜合利用或新型陶瓷燒結技術研發上,減小生產成本,使得AlN陶瓷產品的種類豐富,外形尺寸結構多樣化、滿足多種領域應用的需求。環氧樹脂作為一種有著很好的化學性能和力學穩定性的高分子材料,它固化方便,收縮率低。紹興微米氮化鋁生產商
高導熱氮化鋁基片的燒結工藝重點包括燒結方式、燒結助劑的添加、燒結氣氛的控制等。放電等離子燒結是20世紀90年代發展并成熟的一種燒結技術,它利用脈沖大電流直接施加于模具和樣品上,產生體加熱使被燒結樣品快速升溫;同時,脈沖電流引起顆粒間的放電效應,可凈化顆粒表面,實現快速燒結,有效地抑制顆粒長大。使用SPS技術能夠在較低溫度下進行燒結,且升溫速度快,燒結時間短。微波燒結是利用特殊頻段的電磁波與介質的相互耦合產生介電損耗,使坯體整體加熱的燒結方法。微波同時提高了粉末顆粒活性,加速物質的傳遞。微波燒結也是一種快速燒結法,同樣可保證樣品安全衛生無污染。雖然機理與放電等離子體燒結有所不同,但是兩者都能實現整體加熱,才能極大地縮短燒結周期,所得陶瓷晶體細小均勻。大連電絕緣氮化硼哪家好氮化鋁是一種以共價鍵相連的物質,它有六角晶體結構,與硫化鋅、纖維鋅礦同形。
氮化鋁陶瓷具有優良的絕緣性、導熱性、耐高溫性、耐腐蝕性以及與硅的熱膨脹系數相匹配等優點,成為新一代大規模集成電路、半導體模塊電路及大功率器件的理想散熱和封裝材料。成型工藝是陶瓷制備的關鍵技術,是提高產品性能和降低生產成本的重要環節之一。隨著工業技術的高速發展,傳統的成型方法已難以滿足人們對陶瓷材料在性能和形狀方面的要求。陶瓷的濕法成型近年來成為研究的重點,因為濕法成型具有工藝簡單、生產效率高、成本低和可制備復雜形狀制品等優點,易于工業化推廣。濕法成型包括流延成型、注漿成型、注射成型和注凝成型等。
流延成型的體系,有機流延體系和水基流延體系。有機流延體系所用到的添加劑的成分均有毒,對綠色生產提出了很大的挑戰。近年來,研究者一直致力于尋找添加劑毒性小的流延成型方法。郭堅等以無水乙醇和異丙醇為混合溶劑,利用流延成型制備AlN生坯,燒結后得到AlN陶瓷的熱導率為178 W/(m·K)。水基流延體系因為其綠色環保等特點,成為流延成型發展趨勢。但其在成型后需要對陶瓷生坯進行干燥,目前干燥技術還有待進一步完善。相對而言,流延成型的生產效率高,產品質量高,但此種方法存在的局限性是只能成型簡單外形的陶瓷生坯,無法滿足復雜外形的陶瓷生坯成型要求。近年來,隨著微電子技術的飛速發展,大規模集成電路和大功率微波器件對高尺寸精度的異形封裝和散熱器件的需求正在每年成倍增加,因而需要越來越多的微型、復雜形狀高導熱AlN陶瓷零部件,但是傳統的加工方法很難制備出形狀和尺寸精度滿足需要的零部件。于是,另一種成型方法——粉末注射成型獲得越來越多的關注。氮化鋁是綜合機械性能很好的陶瓷材料,同時其熱膨脹系數很小。
顆粒形狀的影響:相較于顆粒尺寸對氮化鋁陶瓷的影響,顆粒的形貌對其的影響主要集中在粉體的流動性以及填充率的增加上。工業上一般認為氮化鋁粉體呈球形為合理的選擇。球形粉體比其他形狀如棒狀,雙頭六角形狀流動性更好,且填充率也會相對高一些。特別是對于把氮化鋁作為填料的工業領域,流動性差意味著難以均勻混合,勢必會對產品的性能造成一定的負面影響。氮化鋁粉體填充率越高,其熱膨脹系數就越小,熱導率越高。相較于其它形狀來說,球形粉體制成的封裝材料應力集中小、強度高。而且球形粉體摩擦系數小,對模具的磨損小,可延長模具的使用壽命,提高經濟效益。關于氮化鋁的導熱機理,國內外已做了大量的研究,并已形成了較為完善的理論體系。紹興微米氮化鋁生產商
氮化鋁的熱導率主要由晶體缺陷和聲子自身對聲子散射控制。紹興微米氮化鋁生產商
氮化鋁粉體的合成方法:直接氮化法:在高溫氮氣氛圍中,鋁粉直接與氮氣化合生產氮化鋁粉末,反應溫度一般在800℃~1200℃。反應式為:2Al+N2→2AlN。該方法的缺點很明顯,在反應初期,鋁粉顆粒表面會逐漸生成氮化物膜,使氮氣難以進一步滲透,阻礙氮氣反應,致使產率較低;又由于鋁和氮氣之間的反應是強放熱反應,速度很快,造成AlN粉體自燒結,形成團聚,使得粉體顆粒粗化。碳熱還原法:將氧化鋁粉末和碳粉的混合粉末在高溫下(1400℃~1800℃)的流動氮氣中發生還原氮化反應生成AlN粉末。其反應式為:Al2O3+3C+N2→2AlN+3CO。該方法的主要難點在于,對氧化鋁和碳的原料要求比較高,原料難以混合均勻,氮化溫度較高,合成時間較長,而且還需對過量的碳進行除碳處理,工藝復雜,制備成本較高。紹興微米氮化鋁生產商